The Drosophila T-box transcription factor Midline functions within the Notch–Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc
نویسندگان
چکیده
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis.
منابع مشابه
The drosophila T-box transcription factor midline functions within Insulin/Akt and c-Jun-N terminal kinase stress-reactive signaling pathways to regulate interommatial bristle formation and cell survival
We recently reported that the T-box transcription factor midline (mid) functions within the Notch-Delta signaling pathway to specify sensory organ precursor (SOP) cell fates in early-staged pupal eye imaginal discs and to suppress apoptosis (Das et al.). From genetic and allelic modifier screens, we now report that mid interacts with genes downstream of the insulin receptor(InR)/Akt, c-Jun-N-te...
متن کاملSplit ends antagonizes the Notch and potentiates the EGFR signaling pathways during Drosophila eye development
The Notch and Epidermal Growth Factor Receptor (EGFR) signaling pathways interact cooperatively and antagonistically to regulate many aspects of Drosophila development, including the eye. How output from these two signaling networks is fine-tuned to achieve the precise balance needed for specific inductive interactions and patterning events remains an open and important question. Previously, we...
متن کاملHindsight modulates Delta expression during Drosophila cone cell induction.
The induction of cone cells in the Drosophila larval eye disc by the determined R1/R6 photoreceptor precursor cells requires integration of the Delta-Notch and EGF receptor signaling pathways with the activity of the Lozenge transcription factor. Here, we demonstrate that the zinc-finger transcription factor Hindsight (HNT) is required for normal cone-cell induction. R-cells in which hindsight ...
متن کاملFeedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis.
Delta and Notch are required for partitioning of vein and intervein cell fates within the provein during Drosophila metamorphosis. We find that partitioning of these fates is dependent on Delta-mediated signalling from 22 to 30 hours after puparium formation at 25 degrees C. Within the provein, Delta is expressed more highly in central provein cells (presumptive vein cells) and Notch is express...
متن کاملNotch Inhibits Yorkie Activity in Drosophila Wing Discs
During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 130 شماره
صفحات -
تاریخ انتشار 2013